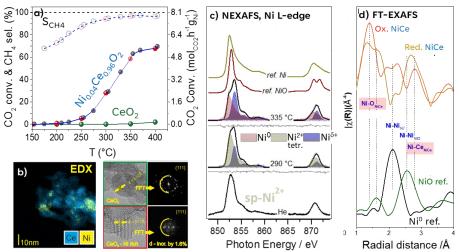


16th International Conference on Surfaces, Coatings and Nanostructured Materials www.nanosmat.org/special.html


ABSTRACT:

Ni-doped CeO₂ with square-planar NiO as highly active catalyst for CCU process

<u>Mathias Barreau</u>^{1*}, Jinming Zhang², Davide Salusso³, Elisa Borfecchia⁴, Jean-Jacques Gallet^{5,6}, Kamil Sobczak⁷, Luca Braglia⁸, Piero Torelli⁸, Spyridon Zafeiratos^{2*}

¹LCS-UMR 6506, CNRS-Ensicaen-Unicaen, 14050 Caen, France
²ICPEES-UMR 7515, CNRS-ECPM-Université de Strasbourg, 67087 Strasbourg, France
³European Synchrotron Radiation Facility, 38043 Grenoble, France
⁴NSTM Reference Center and NIS Centers, University of Torino, 10125 Torino, Italy
⁵Synchrotron SOLEIL, 91192 Gif-sur-Yvette, France
⁶LCPMR, Sorbonne Université, CNRS UMR 7614, 4 place Jussieu, 75005 Paris, France
⁷Faculty of Chemistry, CNBCh University of Warsaw, Zwirki, 02-089 Warsaw, Poland.
⁸IOM CNR Laboratorio TASC, 34149 Trieste, Italy

The Sabatier reaction (CO₂ + 4 H₂ \rightarrow CH₄ + 2 H₂O) is attracting growing interest in the context of limiting anthropogenic CO₂ emissions. Despite its low reaction temperature (200-400 °C), CO₂ activation remains difficult to achieve and requires the formulation of highly active catalysts. In that context, Ni-doped CeO₂ nanoparticles synthesized by a method relying on Schiff base pyrolysis were tested for CO₂ hydrogenation to CH₄ under neutral atmosphere [1]. The performance of Ni-doped ceria reported in Figure 1a was found comparable with that of supported Ni/CeO₂ catalysts containing 5 times higher Ni loading. Indeed, the nickel mass-specific CO₂ conversion (right-axis, Fig. 1a) and CH₄ yield are among the highest reported for Ni/CeO₂ catalysts [2].

NANOSMAT2025

Figure 1. a) Catalytic evaluation of $Ni_{0.04}CeO_2$ and CeO_2 (GHSV = 12000 h⁻¹, CO_2 :H₂ ratio of 1:4, activated in H₂ at 400 °C); b) EDX mapping and HR-TEM images, c) Ni L-edge evolution during reduction and d) k³-FT-EXAFS spectra (calcined/reduced) of $Ni_{0.04}CeO_2$ NPs.

HR-TEM/EDX analysis (Fig. 1b) showed that Ni is atomically dispersed and probably occupies interstitial sites within CeO₂ lattice (no pure NiO). Insights on the specific Ni configuration were obtained from *in situ* NEXAFS (Fig. 1c, APE-HE beamline, Elettra, Italy) and EXAFS (Fig. 1d, BM23 beamline, ESRF, France) studies, revealing the presence of square-planar Ni²⁺ sites (sp-Ni²⁺) resulting from integration into ceria lattice (and supported by theoretical simulation of Ni L-edge spectra). The reduction of Ni²⁺ ions in 1 bar H₂ (Fig. 1c) was found hindered while reduction of Ce⁴⁺ was promoted on Ni_{0.04}CeO₂ NPs, as compared to pure NiO with standard octahedral Ni²⁺ and CeO₂ reference samples. More interestingly, reduction of Ce⁴⁺ is accompanied by further oxidation of Ni²⁺ into Ni⁶⁺ (2< δ <3). This is quite unexpected observation, for nickel oxide treated in 1 bar H₂, and indicates an electronic interaction between Ni and Ce ions (Ni⁶⁺-Ce³⁺ pair) which was also observed under reaction conditions. Further mechanistic details, corroborated by NAP-XPS, were obtained from DFT calculations including the impact of interstitial ionic Ni on the charge modification for adsorbed carbonate therefore on CO₂ activation over ceria surface.

Overall, stable ionic Ni species, associated with interstitial Ni atoms in contact with Ce^{3+} lattice were identified as very active sites for CO_2 conversion, indicating that metallic nickel is not indispensable for CO_2 hydrogenation. This finding may provide the design principles that could lead to more effective catalysts towards the targeted reaction.

M. Barreau *et al.*, Mat. Tod. Chem. 26, 101011 (2022)
M. Barreau *et al.*, Angew. Chem. Int. Ed. 62, e202302087 (2023)